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Abstract

We introduce a lightweight and accurate localization
method that only utilizes the geometry of 2D-3D lines.
Given a pre-captured 3D map, our approach localizes a
panorama image, taking advantage of the holistic 360◦

view. The system mitigates potential privacy breaches or
domain discrepancies by avoiding trained or hand-crafted
visual descriptors. However, as lines alone can be am-
biguous, we express distinctive yet compact spatial contexts
from relationships between lines, namely the dominant di-
rections of parallel lines and the intersection between non-
parallel lines. The resulting representations are efficient in
processing time and memory compared to conventional vi-
sual descriptor-based methods. Given the groups of dom-
inant line directions and their intersections, we accelerate
the search process to test thousands of pose candidates in
less than a millisecond without sacrificing accuracy. We
empirically show that the proposed 2D-3D matching can lo-
calize panoramas for challenging scenes with similar struc-
tures, dramatic domain shifts or illumination changes. Our
fully geometric approach does not involve extensive param-
eter tuning or neural network training, making it a practical
algorithm that can be readily deployed in the real world.
Project page including the code is available through this
link: https://82magnolia.github.io/fgpl/.

1. Introduction
Visual localization considers the problem of estimating the
camera pose with respect to a 3D map using an input im-
age. When designing a visual localization system, the key
desiderata is defining the 3D map and the associated im-
age features to match against the map. The most common
choice in modern localization systems is to use 3D maps
from Structure-from-Motion (SfM) [47, 48] or dense laser
scans [52] and match an image against extracted visual de-
scriptors [2, 11, 34]. While being performant, such a de-
sign choice has several limitations [61]: (i) building and
storing the map of image features can be costly, (ii) pri-
vacy breaches may occur in client-server localization sce-
narios as visual descriptors cannot securely hide clients’

Figure 1. Overview of our method. (a) We target fully geometric
localization using panoramas, where we only exploit lines in 2D
and 3D. (b) Our method first searches for promising poses by com-
paring point and line distance functions that describe the holistic
distribution of lines and their intersections. Then we refine each
selected pose by aligning the line intersections on the sphere.

view [12, 43, 50], and (iii) localization may fail in chal-
lenging conditions such as lighting or scene changes.

In this paper, we argue that the holistic context of lines,
when properly exploited, can be sufficient for performing
accurate and scalable panoramic localization. To elaborate,
as shown in Figure 1, we propose to solely use 3D lines as
the map, and 2D lines extracted from the query panorama
as features for localization. Thanks to the large field of
view, localization methods using panoramas [8, 26–28, 58]
are more robust against scene changes or repetitive struc-
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tures compared to regular cameras. Further, the line maps
can resolve the drawbacks of conventional descriptors: they
are much cheaper to store than SfM or dense point maps,
preserve user privacy as lines alone lack learnt/photometric
features, and are robust to illumination changes.

From lines, we devise fully geometric and compact rep-
resentations that summarize the geometric layout of lines
as shown in Figure 1. Previous approaches for line-based
localization extract rich information along the lines to es-
tablish correspondences between them [20, 33, 37, 44, 45],
which often show inferior performance to prominent point
features [32, 46] or require costly neural network infer-
ences. We enhance the expressive power of our descriptor
exploiting relative information between lines. Specifically,
we first define principal directions to be the representative
clusters of line directions. Then, we compute the intersec-
tions between pairs of lines having different principle direc-
tions. The intersection points, labeled with the two princi-
ple directions they are derived from, serve as the sparse yet
distinctive representation for fine-grained localization.

We further propose a fast pipeline that matches the com-
prehensive distribution of lines while maintaining accuracy.
We express the distribution of intersection points via point
distance functions, which are the distance field measuring
the closest distance to the intersection points on the spheri-
cal projection of the panorama. To efficiently compare dis-
tance functions in various of poses, we propose a formu-
lation that decouples rotation and translation. Namely, we
pre-compute and cache the translational variations of 3D
distance functions, aligned on principal directions. Then,
during localization we quickly compare them against the ro-
tated versions of 2D distance functions. The matched pose
can be further refined by aligning the intersection points
and associated lines, as shown in Figure 1b. The resulting
pipeline can quickly perform accurate localization against
significantly large-scale line maps, without extensive hyper-
parameter tuning.

To summarize, our key contributions are as follows: (i)
a fully geometric localization pipeline that overcomes the
drawbacks of visual descriptors; (ii) novel spatial represen-
tations using line intersections for accurate pose search and
refinement; and (iii) strategies for accelerating pose search
in large-scale localization scenarios. Due to the efficiency
and robustness previously difficult to achieve by geometric
methods, we expect our pipeline to serve as the practical
step towards fully geometric panoramic localization.

2. Related Work
Line-Based Localization Compared to points which are
more frequently used for localization, lines can compactly
describe the spatial layout of man-made structures, and thus
can provide meaningful ques for localization [1, 14, 15, 18,
20, 28, 33, 36–38, 41, 42, 44, 45, 53, 56, 57]. Many exist-

ing approaches for line-based localization focus on estab-
lishing one-to-one matchings between line segments in the
query and the 3D map. Here the matches are found from (i)
learned features using CNNs [30, 41], Transformers [56]
and graph neural networks [35, 36], or (ii) hand-crafted
features describing the nearby texture [25, 59] and seman-
tics [57] of lines. Another strand of approaches aim to
jointly use points and lines during localization [15, 33, 42],
which makes localization more robust in challenging scenes
with repetitive structure or low texture. For panoramic
localization, LDL [28] is a recently proposed work that
promotes distributional matching of lines via line distance
functions and avoids one-to-one line matching. Despite
the effectiveness of the aforementioned approaches how-
ever, many works leverage the photometric information
from the images used for line extraction, and thus are not
fully geometric. We compare our method against exem-
plary line-based localization methods and demonstrate that
our method can perform fast and accurate localization while
only using the geometry of lines.

Localization without Visual Descriptors While visual
descriptors have been the common choice in visual localiza-
tion, there has been recent works exploiting geometric cues
without the aid of visual descriptors. This is mainly moti-
vated from (i) possible privacy breaches [6, 10, 12, 49, 50],
and (ii) large map sizes required for storage while us-
ing visual descriptors. Existing methods can be classi-
fied into those that propose geometric methods for pose
search and other that focus on pose refinement. For the
former, LDL [28] and Micusik et al. [38] exploit lines as
global geometric descriptors to perform pose search. For
the latter, learning-based methods [9, 54, 61] propose to de-
scribe the geometric context of keypoint locations with neu-
ral networks, and optimization-based methods [7, 8] model
keypoint locations as multi-modal probability distributions.
While showing competitive results, these methods still re-
quire the use of visual descriptors in the remaining localiza-
tion pipelines out of their interest. Our method can effec-
tively localize while using geometric features for the entire
pipeline, where we establish comparisons against existing
methods in Section 5.

3. Preliminaries

Our method compares the holistic distribution of lines ex-
tracted from the 3D map and the panorama image, similar
to LDL [28]. In this section, we describe shared compo-
nents between LDL and our approach. Note that unlike
LDL, our method only requires the line segments during
localization, and thus being fully geometric without relying
on costly keypoint descriptors.



Input Preparation LDL first extracts 2D and 3D line seg-
ments using off-the-shelf line extraction methods [17, 20,
55]. Throughout the remainder of the paper, we denote
the 2D line segments as L2D = {l = (s, e)}, where lines
are represented as tuples of start and end points s, e ∈ S2
on the unit sphere. Similarly, we denote the 3D line seg-
ments as L3D = {l̃ = (s̃, ẽ)}, with the start and end
points s̃, ẽ ∈ R3. LDL further extracts three principal di-
rections for 2D and 3D, as shown in Figure 2a. 2D prin-
cipal directions D2D = {di} are extracted by estimating
the three vanishing point directions with the largest num-
ber of incident lines. 3D principal directions D3D = {d̃j}
are similarly extracted by voting on the three most common
line directions. After discarding lines that largely deviate
from the principal directions, LDL clusters lines in 2D and
3D into three sets, namely Lcls

2D = {L1
2D, L2

2D, L3
2D} and

Lcls
3D = {L1

3D, L2
3D, L3

3D}. Each set contains the set of lines
that are parallel to the designated principal direction.

Pose Search Using Line Distance Functions For each
query, LDL generates a pool of Nt × Nr poses consisting
of Nt translations and Nr rotations. The translation pool is
set as grid partitions of the 3D line map, whereas the rota-
tion pool is set by combinatorial association between the 2D
and 3D principal directions, as shown in Figure 3a. Specifi-
cally, there can exist 23 × 3! associations between principal
directions in 2D and 3D considering sign and permutation
ambiguity, where a single rotation is computed for each as-
sociation using the Kabsch algorithm [23].

LDL compares line distance function of the 2D input
against those generated from the pool of poses, and selects
top-K poses to refine. 2D line distance functions are de-
fined over the unit sphere S2 as the spherical distance to the
closest line segment, namely

fL
2D(x;L2D) = min

l∈L2D

dL(x, l). (1)

3D line distance functions are similarly defined for each
pose R ∈ SO(3), t ∈ R3,

fL
3D(x;L3D, R, t) = min

l̃∈L3D

dL(x,ΠL(l̃;R, t)), (2)

where ΠL(l̃;R, t) denotes the projection of the transformed
3D line segment (R[s̃ − t], R[ẽ − t]) onto the unit sphere.
Based on the line distance functions, LDL then scores pose
samples R, t in the pool by comparing the function values at
uniformly sampled points Q ⊂ S2 with the following cost
function

CL(R,t) =
∑
i

∑
q∈Q

ρ(fL
2D(q;Li

2D)− fL
3D(q;L

σ(i)
3D , R, t)),

(3)
where ρ(x)= − 1{|x| < τ} is a robust cost function and
σ(i) denotes the permutation used for estimating R (i.e.,

di ∈ D2D is matched to d̃σ(i) ∈ D3D). Here the dis-
tance functions are separately computed for clusters of dif-
ferent principal directions as shown in Figure 2b, making
the pose search process to better reason about the distribu-
tion of lines.

After selecting candidate poses, LDL refines the sam-
ples of poses using conventional local feature matching [46]
with PnP-RANSAC [13, 31], whereas our approach is fully
geometric. We refer the readers to the original paper [28] or
the supplementary material for more details.

4. Method
As shown in Figure 1, our localization method operates by
first extracting localization inputs (Section 4.1), performing
efficient pose search using point and line distance functions
(Section 5.2), and refining selected poses by matching line
intersections (Section 4.3).

4.1. Input Preparation

In addition to lines and principal directions, we introduce
line intersection points as input to enhance localization per-
formance. As shown in Figure 2a, we obtain three clus-
ters of line intersection points for both 2D and 3D, namely
Pcls
2D = {P 12

2D, P 23
2D, P 31

2D} and Pcls
3D = {P 12

3D, P 23
3D, P 31

3D}.
Here P ij

2D is the set of line intersections obtained from Li
2D

and Lj
2D, and P ij

3D is similarly defined. Additional details
about input preparation are deferred to the supplementary
material.

4.2. Pose Search

4.2.1 Point Distance Functions

We use the additional input of line intersection points to
devise point distance functions. As point distance functions
contain more fine-grained information of scene keypoints,
they can guide towards making more accurate pose search.

Point distance functions are defined in a similar way as
line distance functions. Given a set of 2D points P2D, 2D
point distance functions are defined over the unit sphere S2
as the distance to the closest point in P2D, namely

fP
2D(x;P2D) = min

p∈P2D

dγP (x, p), (4)

where dP(x, p) = cos−1⟨x, p⟩ and γ = 0.2 is a sharpening
parameter to incur more dramatic change near the point lo-
cations. 3D point distance functions are defined similarly
for rotations and translations within the 3D map,

fP
3D(x;P3D, R, t) = min

p̃∈P3D

dγP (x,Π(p̃;R, t)), (5)

where Π(p̃;R, t) denotes the spherical projection of the
transformed 3D point R[p̃− t]. As in Equation 3, point dis-
tance functions can be separately compared for intersection



Figure 2. Line intersection extraction and distance function com-
parison. (a) We pairwise intersect lines clustered along the prin-
cipal directions and obtain three groups of intersection points. (b)
The intersection point clusters are used to define point distance
functions. Together with line distance functions that describe the
coarse scene layout, point distance functions describe the fine-
grained geometry of lines which enable accurate pose search.

point clusters as follows,

CP(R,t) =
∑
i ̸=j

∑
q∈Q

ρ(fP
2D(q;P ij

2D)− fP
3D(q;P

σ(ij)
3D ,R,t)),

(6)
where with an abuse of notation σ(ij) is the juxtaposition of
σ(i) and σ(j), namely permutations of principal directions
for estimating R. As explained in Section 3 and Figure 3a,
each rotation in the rotation pool is obtained by combina-
torially associating principal directions. Our method then
uses point distance functions along with line distance func-
tions for pose search,

C(R, t) = CL(R, t) + CP(R, t). (7)

4.2.2 Efficient Distance Function Comparison

Given a pool of Nt × Nr poses, our method selects top-
K poses to refine by comparing Equation 7. However, ex-
haustive comparison cannot scale to large scenes contain-
ing multiple line maps (or rooms) as shown in Figure 3a.
The 3D distance function term depends on the rotation pool,
which changes for different query images as their 2D princi-
pal directions change. Therefore the 3D distance functions
have to be evaluated on-the-fly for each query image for all
line maps in 3D. Below we introduce two strategies for effi-
cient pose search that is scalable to large scale localization.

Pre-computing 3D Distance Functions We observe that
rotation from 3D distance functions can be decoupled so

Figure 3. Motivation and overview of efficient distance function
comparison. (a) In large-scale localization scenarios, the rotation
pool constantly changes due to the variability of principal direc-
tions in 2D and 3D. Thus exhaustively computing 3D distance
functions for all possible poses on the fly leads to large runtime.
(b) We instead propose to (i) decouple translation and rotation, (ii)
precompute and cache 3D distance functions aligned in the canon-
ical direction, and (iii) during localization interpolate 2D distance
function values at various rotations greatly reducing computation.

that the distance functions only for different translations can
be pre-computed and cached. Specifically, we propose the
following modified cost functions,

CL(R,t)=
∑
i

∑
q∈Q

ρ(fL
2D(q;RTLi

2D)− fL
3D(q;L

σ(i)
3D , I, t))︸ ︷︷ ︸

pre-compute & cached

,

(8)

CP(R,t)=
∑
i ̸=j

∑
q∈Q

ρ(fP
2D(q;RTP ij

2D)− fP
3D(q;P

σ(ij)
3D ,I,t))︸ ︷︷ ︸

pre-compute & cached

,

(9)

where RTLi
2D, RTP ij

2D denotes 2D lines and points rotated
by RT respectively.

The proposed formulation indicates applying Nr rota-
tions on 2D distance functions and comparing against the
cached 3D distance functions. When pre-computing 3D dis-
tance functions, we propose to align the 3D principal direc-
tions to a common coordinate frame (i.e., canonicalize 3D



lines), as shown in Figure 3b. This alleviates calculating all
possible rotations associating 2D-3D principal directions,
but focus only on 2D rotations relative to the canonical-
ized 3D principal directions. Therefore the 2D line distance
functions can be computed in a constant runtime, indepen-
dent to the number of line maps.

Fast 2D Distance Functions via Interpolation We fur-
ther introduce a method to accelerate 2D distance function
extraction. Specifically, we evaluate distance function only
once at the identity rotation, and use them to estimate val-
ues at Nr rotations as shown in Figure 3b. Since distance
functions are defined on a sphere, rotation of the function is
equivalent to rotating the query points q ∈ Q as

f2D(q; R̂L2D) = f2D(R̂T q;L2D) ≈ f2D(q∗;L2D), (10)

where q∗ = argminq̂∈Q dP(q, R̂
T q̂), or the nearest neigh-

bor interpolation.
While the new cost functions and the interpolation

scheme can effectively reduce runtime for pose search, they
are approximations of the original cost functions. Neverthe-
less, we find that the approximations are sufficiently accu-
rate, due to the following theorem.

Theorem 1. Given a metric d(·, ·) defined over the unit
sphere S2, let f(x;S):=mins∈S d(x, s) denote a distance
function to a set of spherical points S ⊂ S2. Consider a
countable, finite set of spherical points Q⊂ S2 that satisfy
maxq∈Q minq̂∈Q d(q,Rq̂) ≤ maxq∈Q minq̂ ̸=q d(q, q̂) = δ

for all R ∈ SO(3). For an arbitrary rotation R̃ ∈ SO(3),
the following inequality holds:

1

|Q|
∑
q∈Q

|f(q;S)− f(argmin
q̂∈Q

d(q̂, R̃q); R̃S)| ≤ δ. (11)

We provide detailed proofs to the theorem in the sup-
plementary material. The theorem suggests that for suf-
ficiently dense query points, the sum of distance func-
tion values remain almost constant under rotation, namely∑

q∈Q f(q;S) ≈
∑

q∈Q f(q;RS). As a result, we can sub-
stitute the lines and points in the original cost functions with
their rotated counterparts: for example for lines,∑

i

∑
q∈Q

ρ(fL
2D(q;Li

2D)− fL
3D(q;L

σ(i)
3D , R, t)) (12)

≈
∑
i

∑
q∈Q

ρ(fL
2D(q;RTLi

2D)− fL
3D(q;L

σ(i)
3D , I, t)), (13)

which leads to the modified cost function in Equation 8, 9.

4.3. Pose Refinement

After finding the top-K poses {(Rk, tk)}, we can refine
them only using geometric representations. Given a good

Figure 4. Pose refinement using line intersections. (a) We first
match line intersections that belong to the same cluster type using
mutual nearest neighbors (Cluster-Guided Matches), along with a
small pair of 2D, 3D intersections that are sufficiently close to-
gether on the sphere (Close Projection Matches). The matches are
then used to optimize translation, where matches are also itera-
tively updated similar to ICP [4]. (b) Rotation is then optimized
based on the final set of matches by aligning the incident line di-
rections of cluster-guided matches. Here we exploit the fact that
each cluster-guided match yields a pair of line matches.

initial pose, we establish correspondences in 2D and 3D
from nearest neighbor matching, and refine translation then
rotation to find a highly accurate pose.

Line Intersection Matching Our refinement, in a big pic-
ture, is similar to the iterative closest point (ICP) [4], where
fast and accurate correspondences are crucial. As shown
in Figure 4a, we avoid outliers by considering two types of
matches, namely intersection points with (i) coherent prin-
cipal direction clusters, or (ii) sufficiently close projected
distances. For the former cluster-guided matches, we use
the permutation σ(ij) for estimating Rk of the candidate
pose. We find the mutual nearest neighbor [19] between the
corresponding intersection cluster pairs: P ij

2D ⊂ Pcls
2D and

P
σ(ij)
3D ⊂ Pcls

3D. Specifically, we first project 3D intersec-
tions onto the sphere Π(Rk[P

σ(ij)
3D − tk]) and find matches

with P ij
2D. For the latter close projection matches, we ig-

nore the cluster types and project all 3D intersections onto
the sphere. We then retrieve 2D-3D pairs with distances be-
low a threshold δ=0.1, resulting in an initial set of point
matches MP = {(m2D,m3D)}.

Translation Refinement We fix rotation estimated from
principal directions in Section 3 and only optimize for trans-
lation given the set of point matches. Specifically, we mini-
mize the following cost function with respect to translation
tk using gradient descent [24, 29]:

C trans(t
(n)
k ) =

∑
m∈MP

∥m2D−Π(Rk[m3D−t
(n)
k ])∥1, (14)



where t
(n)
k is the translation at step n. After each step we

also update the set of matches MP via nearest neighbor
search between P ij

2D and Π(Rk[P
σ(ij)
3D − t

(n)
k ]). The refined

translation t̂k∗ with the smallest cost value and its associ-
ated matches M̂P are then passed to rotation refinement.

Rotation Refinement Finally, we deviate from intersec-
tion points, and refine the rotation using the original line
directions. As shown in Figure 4b, we can deduce two pairs
of line matches from each cluster-guided match in M̂P. Let
M̂L = {([s2D, e2D], [s̃3D, ẽ3D])} denote the set of line
matches obtained from M̂P. We iteratively minimize the
following cost function with respect to rotation Rk∗ ,

C rot(R
(n)
k∗ ) =

∑
m∈M̂L

| cos( s2D × e2D
∥s2D × e2D∥

,
R

(n)
k∗ [s̃3D − ẽ3D]

∥s̃3D − ẽ3D∥
)|.

(15)
The cost function aligns the line directions in 2D to the ro-
tated line directions in 3D. Combined with efficient pose
search, our sequential pose refinement scheme enables ac-
curate pose estimation without resorting to feature de-
scriptors, where we perform detailed comparisons against
feature-based methods in Section 5.

5. Experiments
In this section, we evaluate our method on a wide range
of localization scenarios. We use two commonly used
datasets [8, 26–28, 58]: Stanford 2D-3D-S [3] and Om-
niScenes [26]. Stanford 2D-3D-S consists of 1413 panora-
mas captured in 272 rooms, while OmniScenes is a re-
cently proposed dataset that consists of 4121 panoramas
from 7 rooms. Unless specified otherwise, we use the entire
Stanford 2D-3D-S dataset and the Extreme split from Om-
niScenes, which is the most challenging split that contains
both scene changes and fast camera motion. For all of sce-
narios, we use the fixed set of hyperparameters with the in-
lier threshold τ = 0.1, number of query points |Q| = 642,
and number of translations per line map Nt = 500. Our
method is implemented in PyTorch [40], and we use a sin-
gle RTX2080 GPU with an Intel Core i7-7500U CPU.

5.1. Large-scale Localization

We first provide evaluation in large-scale localization sce-
narios, where the geometric methods as ours can benefit
from the lightweight representations. Here we join mul-
tiple room-level line maps in OmniScenes [26] and Stan-
ford 2D-3D-S [3] to create four large-scale maps: split 1
containing all rooms in OmniScenes, split 2 containing all
rooms in Area 1 from Stanford 2D-3D-S, split 3 and split 4
containing 40 and 60 office rooms in Stanford 2D-3D-S re-
spectively. Note we design the latter two splits to examine
localization in large number of similar-looking structures.
An exemplary large scale map is shown in Figure 1.

Scene No. 1 2 3 4 Search
Time (s)

Refine
Time (s)

Map
Size (GB)# of Rooms 7 44 40 60

LDL 0.54 0.26 0.21 0.19 0.24 0.07 129.75
CP + LG 0.66 0.58 0.67 0.69 0.23 0.07 131.11
CP + GS 0.61 0.58 0.73 0.61 0.23 0.21 132.76
CP + GM 0.25 0.27 0.35 0.33 0.23 0.53 2.86
SFRS + LG 0.60 0.61 0.66 0.68 0.10 0.07 132.47
SFRS + GS 0.47 0.58 0.60 0.58 0.10 0.21 134.12
SFRS + GM 0.07 0.23 0.31 0.23 0.10 0.53 4.22
Ours 0.76 0.61 0.68 0.64 0.02 0.38 2.56

Table 1. Localization evaluation results in large scale scenes. We
compare our method against LDL [28] along with combinations
of various pose search (Cosplace [5] (CP), SFRS [16]) and re-
finement (LightGlue [32] (LG), Gluestick (GS), GoMatch (GM))
methods. For each scene, we report the localization accuracy at
0.1m and 5◦. We additionally report the average pose search time,
refinement time, and map size during localization.

Figure 5. Pose error recall and runtime comparison in Om-
niScenes [26] and Stanford 2D-3D-S [3] for the top-1 retrieval
results. Note the runtime is plotted in log scale, and the super-
script XL denotes that the baseline takes line images as input.

In Table 1 we compare against LDL [28] and competi-
tive combinations of neural network-based pose search and
refinement methods. Note that for baselines other than
LDL, we synthesize images by projecting the colored point
cloud to extract descriptors, similar to [27, 28]. Here all
methods extract top-5 retrieval from pose search, and refine
them. Our method largely outperforms LDL and demon-
strates competitive performance against neural network-
based methods. Further, due to the efficient pose search
scheme proposed in Section 5.2, our method exhibits an
order-of-magnitude shorter search time compared to the
baselines. In addition, as our method only stores the |Q|
3D distance function values, the map size is much smaller
than the baselines that cache high-dimensional global/local
feature descriptors. We make a detailed analysis of the map
size in the supplementary material.

5.2. Pose Search

We make further analysis on the first stage, i.e., pose search,
where the task is to quickly find the closest pose from



Method
Accuracy
(0.1m, 5◦)

Accuracy
(0.2m, 10◦)

Accuracy
(0.3m, 15◦)

LDF 0.57 0.58 0.58
LDF + PDF 0.61 0.62 0.63

(a) Pose search using line / point distance functions (LDF / PDFs)

Method
Accuracy
(0.1m, 5◦)

Runtime (s)
@ GPU

Runtime (s)
@ CPU

Ours w/o Decoupling 0.62 45.049 1908.522
Ours 0.61 2.890 109.561

(b) Decoupling rotation and translation for 3D distance functions

Interp. Canonical.
Accuracy
(0.1m, 5◦)

Runtime (s)
@ GPU

Runtime (s)
@ CPU

✗ ✗ 0.61 0.396 7.243
✗ ✓ 0.61 0.007 0.198
✓ ✓ 0.61 0.004 0.080

(c) Interpolation and line canonicalization for 2D distance functions

Table 2. Ablation study of our pose search method, using the entire
Area 1 of Stanford 2D-3D-S as the 3D map. Note the runtime for
distance functions indicates the time needed to generate all 2D or
3D distance functions for rooms in the map.

pools of rotations and translations in a 3D map. The com-
pared baselines are categorized into neural network-based
(SFRS [16], Cosplace [5]); color distribution-based (PIC-
COLO [26], CPO [27]); and line-based (LDL [28], Cham-
fer [38]) methods. We use the colored point cloud from the
tested datasets and render synthetic views at various transla-
tions and rotations, from which we prepare neural network
descriptors for the baselines. For fair comparison, we use
the identical pool of translations and rotations. We addi-
tionally implement neural network-based methods that take
line images as input instead of the original RGB images
(SFRSL, CosplaceL), to examine how these methods can
handle geometric localization scenarios.

Figure 5 shows the top-1 recall curves and runtimes for
generating a global descriptor per pose. Our method at-
tains a high recall even at strict translation and rotation
thresholds, and shows a much shorter runtime than neural
network-based or color-based methods. While several line-
based methods (LDL, Chamfer) exhibit a shorter runtime,
the retrieved poses from there methods are relatively inac-
curate compared to our method.

Ablation Study We ablate the key constituents of the fast
and accurate pose search pipeline, namely the point dis-
tance functions and the efficient distance function compu-
tation. Table 2 reports the localization error and runtime for
top-5 retrieval using the entire Area 1 of Stanford 2D-3D-
S [3]. Table 2a suggests that using point distance functions
along with line distance functions enhance localization per-
formance. While the LDF-only method is similar to LDL,
we can still observe a performance gap compared to Ta-
ble 1. Due to the efficient distance function comparison, our
method can seamlessly handle large number (|Q| = 642)
of query points during pose search, whereas LDL can only
handle a limited number of query points (|Q| = 42). We

Refinement
Type Method

Visual
Desc.

Accuracy
(0.1m, 5◦)

Accuracy
(0.2m, 10◦)

Accuracy
(0.3m, 15◦)

Line-Based
Refinement

Line Transformer [56] ⃝ 0.76 0.79 0.80
Gluestick [42] ⃝ 0.75 0.79 0.80

Point-Based
Refinement

SuperGlue [46] ⃝ 0.78 0.80 0.81
LightGlue [32] ⃝ 0.79 0.80 0.81
LoFTR [51] ⃝ 0.74 0.78 0.78
PICCOLO [26] ⃝ 0.57 0.59 0.60
CPO [27] ⃝ 0.62 0.64 0.65

Geometric
Refinement

GoMatch [61] ✗ 0.61 0.72 0.74
BPnPNet [9] ✗ 0.04 0.22 0.41
Gao et. al [14] ✗ 0.21 0.56 0.66
PDF Minimization ✗ 0.22 0.38 0.47
LoFTRL [51] ✗ 0.09 0.31 0.50
SuperGlueL [46] ✗ 0.06 0.34 0.57
LightGlueL [32] ✗ 0.37 0.57 0.67
GlueStickL [42] ✗ 0.32 0.51 0.62
Line TransformerL [56] ✗ 0.06 0.29 0.49
Ours ✗ 0.67 0.74 0.76

Table 3. Pose refinement evaluation in OmniScenes [26] and Stan-
ford 2D-3D-S [3]. Note the superscript XL denotes that the base-
line takes line images as input.

Method t-error R-error
Accuracy
(0.1m, 5◦)

Only trans. refine 0.06 1.56 0.78
No intersection clusters 0.08 1.11 0.63
Ours 0.06 1.05 0.77

Table 4. Ablation study of key components of our pose refinement
method, using the Room 2 subset from OmniScenes [26].

provide additional experiments regarding this aspect in the
supplementary material. Table 2b and 2c further support
this claim: decoupling rotation/translation for 3D distance
functions and interpolating and canonicalizing 2D distance
functions lead to significant runtime drops, while showing
almost no loss in accuracy.

5.3. Pose Refinement

To evaluate the second stage of pose refinement, we retrieve
the same top-1 pose using our pose search scheme, and per-
form refinement using various methods. We compare the
accuracy against three classes of refinement methods: line-
based [42, 56], point-based [26, 27, 32, 46, 51], and ge-
ometric [9, 14, 61]. While line and point-based methods
find matches using the photometric information near the
lines and points to increase accuracy, geometric methods
only rely on the locations of keypoints (GoMatch [61], BP-
nPNet [9]) or lines, as we propose. We also implement the
line alignment method proposed from Gao et al. [14], along
with a conceived baseline that directly minimizes Equa-
tion 6 with gradient descent (PDF minimization).

Table 3 shows that our method consistently outperforms
all the tested geometric methods, while showing competi-
tive performance against methods that use visual descrip-
tors. Considering the minimal map size (Table 1), it is a
noticeable performance improvement of purely geometric
approaches.



Method
Visual
Desc. Orig. Intensity Gamma

White
Balance Range Std

Line Transformer ⃝ 0.88 0.70 0.86 0.89 0.22 0.09
Gluestick ⃝ 0.89 0.80 0.89 0.90 0.12 0.05

GoMatch ✗ 0.67 0.66 0.63 0.67 0.08 0.03
GluestickL ✗ 0.36 0.49 0.37 0.31 0.22 0.09
Ours ✗ 0.77 0.74 0.74 0.77 0.05 0.02

Table 5. Pose refinement evaluation under varying lighting condi-
tions in OmniScenes [26]. We report the localization accuracy at
0.1m and 5◦, along with their range and standard deviations.

Figure 6. Recall curves of top-1 pose search amidst lighting condi-
tion variations. We evaluate localization performance on six light-
ing variations and shade the maximum and minimum recall. The
solid lines are the averaged recall values for each tested baseline.

Ablation Study Our pose refinement scheme deploys line
intersections in the place of conventional visual descriptors
and effectively disambiguates matches from point clusters.
Table 4 displays the effect of those components in terms
of localization accuracy and the median translation/rotation
errors using Room 2 from OmniScenes [26]. Optimizing
only translation leads to larger rotation errors, which sug-
gests the importance of rotation refinement. In addition, di-
rectly performing nearest neighbor matching without using
intersection clusters lead to a large drop in localization per-
formance. As intersection clusters prevent outlier matches,
they are crucial for accurate pose refinement.

5.4. Robustness Evaluation
Illumination Changes Our method can stably perform
localization in various environment conditions as long as
we can extract lines. We demonstrate the robustness of our
method amidst lighting changes using the OmniScenes [26]
dataset. Specifically, we separately measure the perfor-
mance of pose search and refinement after applying syn-
thetic color variations to the input panorama, similar to the
experiments conducted in LDL [28]. We consider three
types of color variations (intensity, gamma, and white bal-
ance), where we apply two levels of variations for each type.

Table 5 displays the pose refinement performance at
varying lighting conditions, where all the tested methods
take the top-1 pose search results using our method as in-
put. Our refinement scheme performs competitively against
visual descriptor-based methods, while showing a much
smaller range and standard deviations in localization accu-
racy. A similar trend is observable in Figure 6 that shows

Method
Additional
Input

Estimation
Target

Accuracy
(0.1m, 5◦)

Accuracy
(1m, 30◦)

LaLaLoc [22] Layout Depth 2D Trans. 0.91 0.95
LaLaLoc [22] N/A 2D Trans. 0.58 0.88
LaLaLoc++ [21] N/A 2D Trans. 0.72 0.92
Laser2D [39] N/A 2D Trans. + Rot. 0.79 0.95
Ours Layout Lines 3D Trans. + Rot. 0.95 0.96

Table 6. Localization evaluation using lines from indoor floorplans
in Structured3D [60]. Note for baselines that only estimate trans-
lation, we report the accuracy using only the translation threshold.

the recall curves of top-1 retrievals from various pose search
methods. The width of the shaded regions, which indicates
the range of recall values under illumination changes, is
much smaller for our method compared to the baselines. By
using lines and their intersections as the only cues for local-
ization, our method remains robust against lighting changes.
Applicability to Floorplan Localization While our
method is originally designed for localizing against 3D line
maps obtained from point cloud scans or structure from
motion, we find that our fully geometric setup is versa-
tile to handle 3D floorplan maps without any hyperparam-
eter changes. We test our method on localizing panoramas
against 3D lines extracted from a floorplan map [21, 22, 39]
using the Structured3D [60] dataset. Instead of simply ex-
tracting lines from panoramas, we use the lines from 2D lay-
out annotations [60] to be compatible with the 3D floorplan
maps. Table 6 shows that our method can outperform exist-
ing methods. Further, unlike prior works that only estimate
the 2D translation and rotation, our method can estimate
the full 6DoF pose while attaining competitive accuracy.
Therefore, if combined with sufficiently accurate 2D lay-
out extraction from panoramas (removing the demand for
2D layout annotations), we expect our method to perform
practical floorplan localization.

6. Conclusion
In this paper, we introduced an accurate and lightweight
pipeline for fully geometric panoramic localization. Our
method is solely based on the geometry of lines, and thus
can offer privacy protection while using a much smaller
map size than methods using visual descriptors. To effec-
tively utilize the otherwise ambiguous geometric entities,
we propose point distance functions along with an efficient
comparison scheme for pose search and use principal direc-
tions of lines to match their intersections during refinement.
Due to the lightweight formulation, our method can perform
scalable localization in large scenes and attain robustness in
lighting changes. We thus expect our method to serve as a
practical pipeline for fully geometric localization.
Acknowledgements This work was supported by the Na-
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